Synthetic Biology - The ticket to a Sustainable Future

  • Synthetic biology is the engineering of natural biologic systems such as bacteria, yeasts and fungi, plants and animals to produce the desired products.
  • Business models in the synthetic biology market have evolved, leading to drop in the cost of DNA synthesis and faster product development cycles.
  • Investors are bullish on the growth of the synthetic biology market. Investments into food and healthcare synthetic biology companies have exploded over the last 3–4 years. However, very few products are currently in the market.
  • In India, the field of synthetic biology is at a very nascent stage. There are several research institutes, including the IISERs, IITs, BITS, IIScs, MITADT, working on synthetic biology techniques and products.
  • The next decade will be targeted towards developing a standardized set of bio-design tools to be used across the supply chain.
  • Challenges remain in tech transfer, supply chain, scale up and regulations which need to be addressed over the next decade.
Fig.1: History of Synthetic Biology
Fig.2: Synthetic Biology Market Map
  1. A significant drop in the cost of DNA synthesis and sequencing
  2. Faster designing of genomic sequences leading to a significant increase in the number of synthetic genomes.
Fig.3: Design-Build-Test-Learn in Synthetic Biology
Evolution of Synthetic Biology business models

The technology of synthetic biology is currently accelerating at four times the rate of Moore’s Law. It’s been doing that since 2005, and it’s likely to continue’.

Tech leaders of the last century including Bill Gates, Peter Theil, Marc Andressen, Eric Schmidt, Vinod Khosla, and many others have echoed this sentiment. Investors see a lot of parallels between the computer revolution of the 1970s and the revolution happening in the field of synthetic biology since 2010. The undeniable potential of synthetic biology to impact multiple markets driven by the decrease in costs of DNA sequencing and synthesis has stirred the private funding ecosystem into action. These tech leaders have led investments into major synthetic biology companies such as Zymergen, Gingko Bioworks, Twist Bioscience, and many others through their venture capital funds which include Founders Fund, Andressen Horowitz, Lux Capital, General Catalyst, and many others. From a meager $100 million in 2010, investments topped $18 billion in 2021. This figure is quite bullish considering there are still few commercial products in the market as of now.

Fig.4: Synthetic Biology VC Investments
Table 1: Synthetic Biology Sector Wise Funding
  1. Tech-transfer challenges: typically, technology transfer entails an iterative process optimization of the lab results at the industrial scale. Companies face challenges in cell line stability, economics and purification of the product. Producing similar yields at the industrial scale as seen in the lab is always a challenge.
  2. Creating a robust supply chain: for synthetic biology products to move from the lab to the market, it is important to create an integrated and competitive supply chain. After all, a shift from a chemical-based industry to a bio-industry cannot happen without all the stakeholders in the industry playing their part. There are four key issues in the synthetic biology supply chain which need to be addressed:
    a) Lack of specialization: synthetic biology currently has larger organizations that are trying to vertically integrate and perform all functions from engineering the organisms to the final downstream processing of the product. This is difficult to achieve and is one of the main reasons for the struggles of these companies in the market. The market will have to move towards an ecosystem approach with specialized organizations taking care of different stages of product development and commercialization.
    b) Lack of standardization: industry standards go a long way in ensuring uniformity in the designing and manufacturing processes, indirectly maintaining the quality of the products. Despite the work done by organizations such as BSI and NIST, the synthetic biology market is a long way away from establishing standards for recording and analysis of raw R&D data, data management, automated workflows, commercial manufacturing, and regulatory approvals. Going forward, the market will need to build these standards such as GLPs and ISOs to successfully scale the product.
    c) Scaling up production: currently, contract manufacturing organizations (CMO) are not fully developed to handle the complexities involved in the management of synthetic biology products. These organizations are struggling with high upfront costs, lower margins, and difficulties with variabilities in the feedstock. The market will need CMOs that can produce a range of synthetic biology products using one set of assets.
    d) Downstream processing: downstream processing takes up more than 60–70% of the total manufacturing cost. Most synthetic biology companies lack the expertise to purify the products at a larger scale. The market will require specialized downstream companies to take care of the product purification steps.
  3. Improving the market regulations: the United Nations Convention on Biological Diversity (CBD) is the primary body overseeing the regulatory aspects of synthetic biology. Currently, there are two major subsidiary agreements in place under the CBD’s guidance: The Cartagena Protocol on biosafety of living modified organisms (2000) and the Nagoya Protocol on access and sharing of genetic resources (2011). Apart from these, there are several national policies and regulations being formulated on the use of synthetic biology. The regulations vary depending on the intended applications from human health to food and agriculture. For example, while Brazil is a highly regulated market when it comes to gene editing applications in human health, the country has been more favorable of its use in food and agriculture. Regulations also vary depending on the type of editing being performed. Typically, site-directed Nuclease (SND) 1 and 2 types of mutations that involve gene deletion and overexpression are exempt from the GMO category, while SND3 involving the addition of foreign DNA is being considered under the GMO purview.

“Biology, it’s the technology which builds our world, and we can harness it to shift humanity from a scarcity to an abundance economy”- Ryan Bethencourt



Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store